ME-GI Engine Fuelled by LNG

Andrzej Krupa
Managing Director
MAN Diesel & Turbo Poland Sp. z o.o.
Disclaimer

All data provided on the following slides is for information purposes only, explicitly non-binding and subject to changes without further notice.
12K80MC-GI-S – Chiba Power Plant
The 10 Years GI Experience

1994 - 2003

GI = High Pressure Gas Injection
General Data for
Liquid Gas Delivery Condition:

Pressure:
Nominal 550 bar
Max. value 600 bar
Pulsation limit 3 bar
Set point tolerance 5%

Temperature:
Approx. 25°C -> 55°C / tolerance 10 °C
From Diesel to Dual Fuel Gas Burning Combustion Process

Two-stroke
- Diesel process maintained
- Unchanged power density
- Unchanged load response
- No knocking or misfiring risk
- Insensible to gas quality
- No methane slip
- High pressure gas injection

Four-stroke
- Otto process by gas-air premix
- Power reduction or increased cylinder bore
- Risk for knocking and misfiring
- Load ramp needed
- Methane slip 2%-4%
- Low pressure gas injection

ME-GI is two-stroke
The ME-GI uses the Diesel Cycle.

Diesel Cycle
- Unchanged power density
- Unchanged load response
- Avoids knocking
- No methane slip
- High pressure gas

Otto Cycle
- Power reduction or increased cylinder bore
- Load ramp needed
- Pre-mixed combustion process
- Methane slip 2%-4%
- Low pressure gas
- Gas Leakage Control
- Gas Injection Control
- Gas Combustion Control
ME-GI
The Engine Parts

7S70ME-GI

Gas Condition:
300 bar & 45 degC

Fuel (& Pilot) Injector
Gas Injector
Gas Control Block
Double Wall Piping
ME-GI
Gas Combustion Control
PTFE sealing rings – chrome plated sealing surfaces

- Stainless steel spring
- PTFE sealing ring
- Chrome plating
Gas distribution in ventilated, monitored duct
No escape of gas to engine room
Gas distribution in ventilated, monitored duct
No escape of gas to engine room
ME-GI Characteristics

- No gas slip
- No escape of gas to crankcase
- No escape of gas to engine room
- No unintentional gas injection
- No knocking
- No gas quality sensitivity
Heat Release at 75% Load

Heat Release & Overall Performance: SFOC equal or better
Emissions

\(\text{NO}_x: \ 24\% \text{ lower} \)

\(\text{CO}_2: \ 23\% \text{ lower} \)
Gas running @ 15% engine load
ME-GI Gas Fuel Mode Concept

Fuel oil only mode
• Operation profile as conventional engine

Gas fuel operation mode
• No methane slip
• No knocking problems
• Insensitive to gas fuel
• Unchanged load response
- Power Unchanged
- Consumption Unchanged (or Lower)
- 5% Pilot Oil (or Lower)
- Change-over at 15% Load (or Lower)
- 23% CO2 Reduction
- IMO NOx Tier II
- IMO NOx Tier III (w/EGR Scheduled)
- IMO SOx
IMO NOx Tier III
Exhaust Gas Recirculation (EGR)
IMO NOx Tier III
Exhaust Gas Recirculation (EGR)

EGR Service Test Retrofit on 7S50MC-C
Proof of Concept
ME-GI and IMO NOx Tier III
Exhaust Gas Recirculation (EGR)

ME-GI + EGR

= Tier III in *Gas Mode* + Tier III in *Fuel Mode*

= Full Fuel Flexibility
Conclusion ME-GI and ME-LGI

- Over all efficiency: Better
- Operational cost: Better with gas price of today
- Reliability: Unchanged
- Emission: Filling Tier II /alt. Tier III with EGR/SCR
- Emission: 95% reduction on SOx
- Load response: Unchanged during gas operation
- Pilot oil amount: 5% at 100% Load, reduced to 2% at 10 % load
- Gas operation: Gas operation during full load
- Auto Tuning: Available
- Gas Supply system: 6 different solutions available
- Future fuels: LNG, LPG, DME, Methanol, Ethanol
The ME-GI Add-on Platform
Applicable for all ME Engine Types
Thank You for Your Attention!

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.